
Australian Un" x systems

Use~ Grou Newsletter

Volume 8

Number 5

Includes Winter 1987 Conference Papers

Regl=tered by Au=tmll= Post Pul~0~ ~o, ITBG6824

The Australian UNIX* systems .User Group Newsletter

Volume 8 Number

October 1987

CONTENTS

AUUG General Information 3

Editorial 4

President’s Report 5

Sofiway Advertisement 6

Adelaide UNIX Users Group Information 7

Winter 1987 Conference Papers 8

UNIX at the Turn of the Century - Abstract 10

The Locking of Critical Regions Under UNIX 11

Fun with Virtual Memory 20

Recent Work on Research UNIX 26

The Shared Library Mine field 27

SunOS Release 4.0 36

Writing Parallel Programs for the Sequent Multiprocessor - Abstract44

UNIX on the Cray - Abstract 44

A Low Cost, Short Range, Reconfiguarable Microwave Data Link54

Some Aspects of System V Release 3 Networking75

Optimizing C - Benchmarks and Real Work - Abstract75

Measuring Database Performance using TPI benchmark - Abstract76

DBMS - Efficient Implementations for UNIX systems - Abstract 77

What’s in a name? (or coping with lots of small files)78

An Image of the Future - Abstract 84

Plexus XDP System - Background Information 85

Awk-ward yacc ::= lex 90

Mail links from VMS to UNIX 94

The SUN Network File System: Design, Implementation and Experience96

Shared Libraries in SunOS 112

Vitual Memory Aritecture in SunOS 128

Virtual Address Cache in UNIX 143

AUUGN 1 Vol 8 No 5

From the ;login: Newsletter - Volume 12 Number 5 151

Computer Graphics Workshop 152

POSIX Portability Workshop 152

C++ Workshop 153

Call for Papers: Winter 1988 USENIX Conference 154

Call for Papers: Summer 1988 USENIX Conference’ 155

Second Distribution of Berkeley PDP-11 Software for UNIX156

RT PC Distributed Service: File Systems 159

Book Review: UNIX System Security 170

Book Review: troff typesetting for UNIX Systems 172

Work-in-Progress Reports from the Phoenix Conference 174

Management Commitee Meeting Minutes - May 1987 180

Management Committee Meeting Minutes - August 1987 184

Annual General Meeting Minutes - August 1987 188

AUUG Membership Catorgories 191

AUUG Forms 193

Copyright © 1987. AUUGN is the joumal of the Australian UNIX* systems User Group. Copying
without fee is permitted provided that copies are not made or distributed for commercial advantage and
credit to the source must be given. Abstracting with credit is permitted. No other reproduction is
permitted without prior permission of the Australian UNIX systems User Group.

* UNIX is a registered trademark of AT&T in the USA and other countries.

Vol 8 No 5 2 AUUGN

AUUG General Information

Memberships and Subscriptions
Membership, Change of Address, and Subscription forms can be found at the end of this issue.

All correspondence concerning membership of the AUUG should be addressed to:-

The AUUG Membership Secretary,
P.O. Box 366,
Kensington, N.S.W. 2033.
AUSTRALIA

General Correspondence
All other correspondence for the AUUG should be addressed to:-

The AUUG Secretary,
Department of Computer Science,
Melbourne University,
Parkville, Victoda 3052.
AUSTRALIA

ACSnet: auug@munnari.oz

AUUG Executive
Ken McDonell, President

kenj@moncsbruce.oz
Department of Computer Science, Monash University, Victoria

Robert E|r~ Secretary

kre@munn~.oz
Department of Computer Science, University of Melbourne, Victoria

Chris Ma|tby, Treasurer

chris@gris.oz
Softway Pry. Ltd., N.S.W.

Chris Campbe$, Committee Member

chris@olisyd.oz
Olivetti Auswalia, N.S.W.

P~ers Lander, Committee Member

piers@ basser.cs.su.oz
Basser Department of Computer Science, Sydney University, N.S.W.

,~ohn Lions, Committee Member

johni@elecvax.oz
School of Electrical Engineering and Computer Science, University of New South Wales, N.S.W.

Tim Roper, Committee Member

timr@labtarn.oz
Labtam Limited, Victoria

Next AUUG Meeting
The next meeting will be held in Melbourne during August-September 1988.
Futher details will be provided in the next issue.

AUUGN 3 Vol 8 No 5

AUUG Newsletter

Editoria|

I hope you enjoy this issue and please contribute to the next issue.

REMEMBER, if the mailing label that comes with this issue is highlighted, it is time to renew your
AUUG membership.

AUUGN Correspondence

All correspondence reguarding the AUUGN should be addressed to:-

John Carey
AUUGN Editor
Computer Centre,
Monash University
Clayton, Victoria 3168
AUSTRALIA

ACSnet: auugn@monul.oz

Phone: +61 3 565 4754

Contributions
The Newsletter is published approximately every two months. The deadline for contributions for the
next issue is Friday the 11th of December 1987.

Contributions should be sent to the Editor at the above address.

I prefer documents sent to me by via electronic mail and formatted using troff-mm and my footer
macros, troff using any of the standard macro and preprocessor packages (-ms, -me, -ram, pic, tbl, eqn)
as well TeX, and LaTeX will be accepted.

Hardcopy submissions should be on A4 with 35 mm left at the top and bottom so that the AUUGN
footers can be pasted on to the page. Small page numbers printed in the footer area would help.

Advertising
Advertisements for the AUUG are welcome. They must be submitted on an A4 page. No partial page
advertisements will be accepted. The cun’ent rate is AUD$ 200 dollars per page.

Mailing Lists

For the purchase of the AUUGN marling list, please contact Chris Maltby.

Disclaimer
Opinions expressed by authors and reviewers are not necessarily those of the Australian UNIX systems
User Group, its Newsletter or its editorial committee.

Vol 8 No 5 4 AUUGN

This issue of AUUGH contains most of the papers presented at the recent Winter Technical Meeting held at NSWIT,
August 27°28.

That meeting, and the "up-market" approach to the associated exhibition was the result of some very hard work and
innovation on the part of the local organizing committee under Greg Webb’s chairmanship. Once again I’d like to
thank them for an excellent job, well done.

Concurrent with the Sydney technical meeting was an AULIG management committee meeting at which the following
resolutions were made,

® There will be a serious attempt to increase benefits that flow from AUUG membership, particularly in respect
of redistribution of software and publications from affiliated user groups.

® A second round of 4.3BSD manual orders will be processed; the order form will appear in the next AUUGN.

® AUUG should actively solicit support from vendors of Unix-related products, especially in respect of publiciz-
ing the group and attracting prospective new members.

® The AUUGN editor shall henceforth be invited to attend management committee meetings to be involved in
discussions relating to publications and to prepare a report on the meeting for the next AUUG (prior to publica-
tion of the minutes of the meeting).

o ALrUG should take a more active role in soliciting financial support and more equitable cost-sharing arrange-
ments to guarantee the long-term viability of ACSnet.

® Matters of policy relating to meeting organization (dinner costing, sponsorship, credit card facilities, student
participation, etc.) will he formalized and collected into a document that will be given to future meeting organ-
izJng committees.

Long-term planning of activities, including the venue, schedule and format of technical meetings is a matter requiring
our urgent attention. At this stage there seems to be considerable support for a NSWIT-Iike meeting held once per
year (probably in August or September); this leaves the format of the other (summer) meeting unresolved. At this
stage, convergence on a rational short-term schedule may demand that no national summer meeting be held in 1988,
but a revamped and professionally organized winter meeting with full-scale equipment exhibition would be held in
Melbourne around early September 1988.

As a substitute for a national 1988 summer meeting, there is possibility that AUUG could sponsor an overseas
speaker(s) tour in February, or encourage several smaller State-based informal technical meetings in the same time
frame.

Given the importance of this.departure from h~storical precedent, mad the fact that the matter cannot be finally
resolved until the next management committee meeting on December 10, all members can expect to receive
correspondence from AULrG by mid-December outlining the meetings programme for 1988 and beyond.

In the interim, I would welcome your comments either spoken ((03) 565 3899), e-mail (kenj@moncsbruce.oz) or via
~.ews (aus.auug).

As this will be my last con~bution in tiffs role (I depart for the LI.S. soon, and shall be resigning as AUUG
President), I would l~ke to take this opportunity to extend my sincere thanks to all members of AUUG for their con-
tributions, and in particular to the members of the management committees and the AUUGN editors.

Ken J. McDonell

AU-UGN 5 Vol 8 No 5

a Techway company

for

I~ UNIX System V

I~ Documentor’s Workbench 2.0
- and various back-end drivers
- PostScript support of plain text
- support for graphs and images

I~’ Ports & Device Drivers

~ Intelligent Benchmarking

~1’ SUN-Ill (ACSnet) + installation

~’ Biway- Bi-directional modem software for System V
and 4bsd

I~’ Courses:

- Beginner’s Workshop

- Fast start to UNIX

- System Administrators’ workshop

~ Technical Backup

- and all sorts of interesting software development.

Softway Pry Ltd. (Incorporated in NSW)
20 Chalmers St, Strawberry Hills, NSW.

PO Box 305, Strawberry Hills, NSW 2012.
(02) 698 2322 Fax (02) 957 6914

Vol 8 No 5 6 AUUGN

Ade|aide UNIX Users Group

The Adelaide UNIX Users Group has been meeting on a formal basis for 12 months.
Meetings are held on the third Wednesday of each month. To date, all meetings have
been held at the University of Adelaide. However, it was recently decided to change
the meeting time from noon to 6pm. This has necessitated a change of venue, and, as
from April, meetings will be held at the offices of Olivetti Australia.

In addition to disseminating information about new products and network status, time
is allocated at each meeting for the raising of specific UNIX related problems and for
a brief (15-20 minute) presentation on an area of interest. Listed below is a sampling
of recent talks.

D. Jarvis
K. Maciunas
R. Lamacraft
W. Hosking
P. Cheney
J. Jarvis

"The UNIX Literature"
"Security"
"~ on Micros"

"Office Automation"
"Commercial Applications of UNIX"
"troff/ditroff"

The mailing list currently numbers 34, with a healthy representation (40%) from
commercial enterprises. For further information, contact Dennis Jarvis
(dhj@aegir.dmt.oz) on (08) 268 0156.

Dennis Jarvis,
Secretary, AdUUG.

Dennis Jarvis, CS/RO, PO Box 4, Woodville, S.A. 5011, Australia.

PHONE: +61 8 268 0156
UUCP: {deevax,pesnta,vax135 } lmulga!aegir.dmt.ozldhj
ARPA: dhj%aegir.dmt.oz!dhj@seismo.arpa
CSNE~: dhj@aegir.dmt.oz

AUUGN 7 Vol 8 No 5

AUUG Winter 1987 Conference Papers
In order of presentation

UNIX at the Turn of the Century
Abstract Only

Michael Tilson
HCR Corporation, Canada

The Locking of Critical Regions under UNIX
Paper

Frank Crawford
Q.H. Tours

Jagoda Crawford
Australia Nuclear Science and Technology Organization

Fun with Virtual Memory
Paper

Lucy Chubb
Univeristy of New South Wales

Recent Work on Reseach UNIX
Abstract Only

Peter Weinberger
AT&T, U.S.A.

The Shared Library Minefield
Paper

Michael Selig
Olivetti Australia

SunOS 4.0
Paper

Richard Burridge
Sun Microsystems Australia

Writing Parallel Programs for the Sequent Mutiprocessor
Abstract Only

Stephen Frede
Sofiway Pty. Ltd.

Vol 8 No 5 8 AUUGN

AUUG W nter 1 87 Conference Papers

continued

UNLY on the Cray
Abstract Only

Peter Weinberger
AT&T, U.S.A.

A Low Cost, Short Range, Reconfigurabl~e Microwave Data Link
Paper

Chris Clarkson, Ian Dall, and Alex Dickenson
University of Adelaide

Some Aspects of System V Release 3 Networking
Paper

Tim Roper
Labtam Pty. Ltd.

Optimizing C - Benchmarks and Real Work
Abstract Only

Michael Tilson
HCR Corporation, Canada

Measuring Database Performance using TPI Benchmark
Abstract Only

Ken McDonell
Monash University

Database Management Systems o Efficient Impllementations for UNIX systems
Abstract Only
Angela Heal

Queensland Depam~ent of Primary Industry

What’s in a Name? (or Coping with Lots of Small Files)
Paper

John Lions
University of NSW

An hnage of the Future
Abstract and XDP Product Background

Julian Day
Microprocessor Applications

AUUGN 9 Vol 8 No 5

UNIX at the Turn of the Century

Michael Tilson
HCR Corporation

130 Bloor Street West, l Oth Floor
Toronto, Ontario M5S 1N5 Canada

(416) 922-1937
{utzoo ,ihnp4}.t hcr.t mike

UNIX has been available outside Bell Labs since about 1974. Thirteen years ago the system was
new, still experimental, and rarely used. Today, UNIX is mature, becoming standardized, and
widely used. What can we expect in the next thirteen years? This talk discusses the technology
trends that will determine the status of UNIX at the turn of the century.1

UNIX has become a standard working environment for software development. The lifetime of
standards is surprisingly long. FORTRAN has been with us for a long time, and it looks like it will
be with us for decades to come. Today’s UNIX system will still work fine until at least late
January, 2038.2

On the other hand, technology continues to advance at a rapid rate. Systems that once appeared
modem become obsolete and obstacles to productivity. There is no reason to believe that the rate of
change will slow between now and the end of the century. The important trends that must be
considered include memory sizes, processor speed, network bandwidth, networking and
communications software, user interface hardware and software, and software development
technologies. We will see low cost, extremely powerful, more friendly computer systems, that
have very high bandwidth connections to other systems. UNIX must adapt to these changes.

The existence of virtually identical software environments on almost all machine architectures
opens up possibilities that never before existed. The multi-vendor NFS demos that now occur at
many UNIX commercial exhibitions would have been unthinkable not very long ago. But in the
next thirteen years UNIX will open the door to possibilities for distributed processing and
distributed applications that go far beyond anything we can do today.

This talk attempts to reconcile the conflict between the pressing need for change and the inertia of
standards. A technical forecast is provided, giving a framework for looking at UNIX systems
development over the next decade. The goal is to understand why a typical obsolete C application
written in the mid-80’s might be still running on an incredibly advanced architecture, moving data
from New York to Tokyo in the year 2000.

Forecasting for the next millenium is a dangerous business. Historically, the advent of a new
millenium triggered a plethora of forecasts. The talk will touch on some of the interesting parallels
with events that occurred around the year 1000.

[Note: A shorter version of this talk was given at the Usenix Conference, June 1987.]

1The pedantic reader will notice that the turn of the century.is assumed to be the year 2000, and of course this really
happens January 1, 2001. However, I suspect that when the time comes, the big celebration (or the wait for the end
of the world) will come a year’earlier. Anyway, UNIX programmers prefer 0-indexing.

2On 32-bit processors the current UNIX time algorithms will overflow after this date. Still, this is it quite a bit
better than some other systems that will fall over dead after December 31, 1999. When 64-bit processors become the
norm, future timekeeping may be restricted only by limitations of storage needed to hold the time zone and daylight
savings algorithms.

Vol 8 No 5 10 AUUGN

The Locking of Critical Regions Under UND~TM

Frank Crawford
Q.H. Tours

PO 630, North Sydney 2060

and

Ja goda Crawf ord

Auatralian Nuclear Science and Technology Organisation
Private Mailbag 1, Menai 2234

ABSTRACT

As more multiprocessor systems running tn, nx come into common use, there is a need to
re-examine the standard techniques employed to lock critical regions in concurrent
processes. This paper identifies some of the inadequacies of these methods and details a
number of functions available in AT&T’s System V and/or Berkeley’s 4.2/4.3 BSD that give
secure locking in both single and multiprocessor environments. Finally, an example is given
of a method suitable only for a single processor environment and a corresponding method
for multiprocessors.

m ta~x is a registered trademark of AT&T in the USA and o~her countries.

AUUGN 11 Vol 8 No 5

1. Introduction

To meet the continuing demand from science and industry, manufacturers are seeking new methods
for realising more computer power. One method that has emerged recently is to utilise a number of
separate processors in the one system, i.e. multiprocessor systems. In all current commercial
applications, the aim of multiprocessor systems is to increase throughput rather than decrease the
execution time of a single process.

There are two broad categories of multiprocessing. One is to dedicate all available processors to the
execution of a single job, dividing it into a number of separate threads, each of which is run on a
separate processor with the system handling synchronisation and communication. This is still a very
active research area and is not yet available for commercial use. The second approach is much coarser,
each job being run on a separate processor, with no interaction between jobs.

The simple view of multiprocessing given above does not descfihe the whole picture. When a
modem operating system supporting multiprogramming is introduced, additional complexities arise. As
an example, it is not desirable to tie a given process to a particular processor; rather it must he capable
of being switched between any of the available processors. Further, the scheduling algorithm must be
able to handle a number of jobs concurrently.

Despite the additional complexity, multiprocessors have a number of advantages over a number of
separate processors, mainly in the sharing of resources, e.g. memory, peripherals and especially sharing
the workload. This sharing of resources has long been a feature of multiprogramming and many of the
principles can be applied to multiprocessing.In effect, multiprocessors are a development of
multiprogramming.

2. Synchronisation

When resources are shared by a number of processes, it is possible that the same resource, e.g. tape
drives, shared memory or files, will be required by more than one process at a given time. Care must
be taken to ensure that access to any one of these resources is serialised. Serialisation may be handled
directly by the operating system (e.g. for tape drives) or left to the processes to synchronise their
activities. The type of resource generally dictates at which level the synchronisation is done, i.e. kernel
or process. This paper only considers synchronisation at the process level and, in general, ignores how
the kemel may handle it.

To take a more concrete example, access to shared memory is considered, although it would be just
as easy to consider access to a file (e.g. a database application) or to some other device.

2.1 Simple Locking Scheme
One of the simplest means of locking is to put aside a single variable, called lock, and to set it to

one to lock the resource. Similarly, set lock to zero to unlock the resource. The scheme in Figure 1
shows a simple function, for this purpose1.

1. Examples in this paper show only relevant parts, no attention being given to dealing with error conditions, etc.

Vol 8 No 5 12 AU-UGN

extern int lock;

void lock resource ()

while (lock != O)
/* Wait */ ;

lock++;

void unlock resource
(

lock = O;
)

Figure 1. Simple Locking Scheme.

This is the most common form of locking used, and on single processor systems it works well.
However, it may fail in a multiprocessor environment, and further it can even fail in a single processor
environment. The reason for this failure is fakly simple to explain; if two processes are using this
scheme to lock a resource, it is possible that one of the processes will be swapped between finding lock
to be zero and setting it, during which time the other process may well execute the same code, and so
both may gain access.

This procedure can be modified to work on a single processor system by making use of two or more
variables. However, on a multiprocessor system it can still fail. This is more difficult to explain, but
the basic problem is that there is no indivisible instructions available to the programmer, unlike the ++
operation on a single processor system2.

On a multiprocessor system it would be possible for two (or more) processes to be executing the
same instructions at the same time, so that both attempt to increment the lock variable at the same time.
More realistically the memory read and write cycle would mean that only one increment would be
effective, overiding the other one.

2.2 Theoretical Considerations
Synchronlsation problems, such as those mentioned above, have been studied extensively since the

mid 1960s, and a number of solutions proposed. The sequence of statements that must appear to be
executed as an indivisible operation, such as the lock_res~rce and unlock_resource functions above, is
called a critical section. The term mutual exclusion refers to the fact that only one process can be in its
(common) critical section at any thne. Mutual exclusion is used to refer to shared objects (e.g. data
structures, files, etc.) whereas critical sections refer to process segments.

The proposed solutions can be grouped into two broad categories: one where the programmer
controls all of the details of the exclusion, and the second, where a set of primitives or programming
constructs are provided which hide the details.

2.2.1 User controlled synchronisation t~ven within this category there are two separate areas: the low
level (hardware) method, e.g. locking the bus, disabling interrupts and test and set instruction, all of
which may be used within a kernel, but are not directly available to user level programs; and higher
level algorithms such as Dekker’s algorithm [Dijkstra 1965] and others. All of the software proposals
require a knowledge of how many processes are going to be sharing the resource, something which is
not generally known beforehand in a multiprogramming environment. They also suffer from the

2. This is not guaranteed but is commonly assumed, as any u~ful computer architecture should have an increment instruction,
whether on a register or a memory location. Similar argumen~ apply to a clear instruction.

AUUGN 13 Vol 8 No 5

drawback of requiring a busy-wait, which is wasteful of processor time. Thus these methods are not
suited to the average computing environment.

2.2.2 System supplied constructs In all of these methods the system hides the details of implementation
within the kernel, and provides various calls for the programmer. These methods include semaphores,
monitors and message passing. These can all be shown to be equivalent, i.e. each one can be
implemented in terms of another. For a more detailed discussion see Tanenbaum [1987].

From this brief discussion, it can be seen that for a progranuner to make use of any of the
synchronisation methods, it is necessary for the construct to be built into the kernel. This is the case
with the two most common versions of UNIX, AT&T’s System V and 4.2/4.3BSD.

3. General UNIX Fa~:illties

Although Edition 7 and earlier versions of uNIX did not offer explicit methods of locking regions,
there were a number of features which could be utilised to achieve locking. Creat can be used to create
a file with mode 0 (or anything without write permission). If this fails, repeat the process until
successful, i.e. a busy wait. When processing is finished, remove the file. Using a lock file, the
previous example can be rewritten as follows:

#define LOCKFILE "lock"

void lock resource

int fd;

while ((fd = creat(LOCKFILE,
/* Wait */ ;

(void) close(fd);

0)) < 0)

void unlock resource ()

(void) unlink (LOCKFILE) ;
)

Figure 2. Locking using creat.

The example in Figure 2 relies on the use of permissions to stop the creation of an existing file.
However this procedure fails for root, who commonly needs to perform some form of locking. It also
has the side effect of creating a number of files which are not required, and the possibility of leaving a
lock after the process has died.

A number of schemes relying on the linking of files can also be used, but these suffer from problems
such as race conditions within the kernel. On these versions of UNIX it is not possible, in general to
implement a reliable locking scheme.

4. 4.2BSD Fadlities

Berkeley Software Distributions3 4.2 (and 4.3) offer a number of methods of concurrency control, the
¯ majority of which again make use of the file system.

3. Berkeley Software Distribution wa~ developed from Edition 7 u~lx and is distributed by the University of California, Berkeley.

Vol 8 No 5 14 AUUGN

The simplest of the methods enhances the method shown in Figure 2. The main change is the
ability to specify that file creation is to fail if it already exists (i.e. specifying (O_CREAT[O_EXCL) to
open). Again all these methods entail busy waiting.

Another method using the file system is to use the file locking system call, flock. This can be used
as a semaphore and is guaranteed to enable concurrency among cooperating process. It enables
processes to be blocked awaiting the release of the ’lock’, thus not wasting processor time. Also, as the
kernel is handling the lock, it is able to remove it automatically ff the locking process dies.

Again, the fact that flock uses the file system has the possible disadvantage that for concurrency
control not involving files, a special file must be created. This means it cannot be implemented across
distributed systems without a common file system. For processes using common files, this is a
reasonable method.

A general but more complex method available under 4.2BSD is to use message passing. For
processes sharing a common parent it can be as simple as pipes, but for those without a common
ancestor, it becomes necessary to use sockets. The concept of message passing is simple; all processes
wanting access to a particular resource send a message to a single locking process or daemon, who’s
sole function is to sefialise entry into critical sections.

Individual processes wishing to enter their critical regions send a request to the locking daemon and
wait for a reply. Upon leaving they send another message. This is depicted in Figure 3. This method
is used in some database management systems, e.g. IngresTM. An example of this is shown below,
however the detail of setting up the connection and the locking daemon are omitted.

#define REQUEST
#define FINISHED
extern int lock_fd;

"My Turn?"
WWFinished-

void lock resource

char buf;

(voidi write (lock fd, REQUEST, sizeof(REQUEST));
(void) read (lock_fd, &buf, sizeof(buf)) ;

void unlock resource ()
{

(void) write (lock_fd~ FINISHED~ sizeof(FINISHED)) ;
)

Figure 4. Locking Using Message Passing.

System V Facilities

System V offers a number of different facilities for handling concurrency and locking. As with
4.2BSD, it is possible to use the file system via creat or open. It is also possible to use file locking
with fcntl and/or lockf. Although the details are different, the outcome is the same.

Apart from these facilities, System V also offers some direct support for concurrency. These are
semaphores and messages. Again, although the implementation of messages is very different from

~ Ingres is a trademark of Relational Technology International.

AUUGN 15 Vol 8 No 5

(a) Multiple lock requests

@

@

@

finish

(c) Unlock signalled

grant request

/
@

/ �block request

(b) One request granted

@

request

(d) Grant a blocked request

Figure 3. Sequence of Events with Message Passing.

4.2BSD’s sockets, for the purpose of locking it can be considered the same.

Semaphores are not directly available under any other version of uNIx, and their implementation is
similar to standard text book definitions.

5.1 An Example Using Semaphores
Consider an example of a system where there are a number of processes using shared memory, such

as a relational database with a per table write through cache. Accessing this cache is a critical section,
as any writes must not change the data being read. Further even reading can modify the cache because
entries not in the cache will cause it to update.

As there are a number of separate tables, it is best to have a separate semaphore for each table (using
only one would degrade performance of the entire system).

The initialisation procedure could be as follows:

Vol 8 No 5 16 AUUGN

#include <sys/types~h>
#include <sys/ipcoh>
#include <sys/semoh>

#define DATABASE
#define NOTABLES
#define VERSION
#define SEMPERM

"fileodb"
75
1
0666

/* The database file */
/~ Number of database tables
/~ Some version number */
/~ Everyone can get it */

extern key_t ftok ();
,

extern int semid;

void sem init ()
{

register int i;
union semum arg;

semid = semget (ftok (DATABASE, (char) VERSION),
NOTABLES, (SEMPERM I IPC_CREAT)) ;

arg.val = i; /* Initial value of semval ~/
for (i = 0; i < NOTABLES; i++)

(void) semctl (semid, i, SETVAL, arg);

Figure S. Initial/sing the Semaphores.

Tiffs inifialisation sets the maximum number of processes in the critical region to one, by setting
arg.val. This is known as a binary semaphore. In other applications it could be set to d~fferent values.

AUUGN 17 Vol 8 No 5

After this initialisation, individual semaphores within the set would be used to control access to each
table, as follows:

extern int semid;

void lock resource (table)
int table;

(
struct sembuf sops,

*sops_ptr = &sops;

sOpsosem num= table;
sOpsosem_op = -I

Increment semadj for process exit
sops.sem_flg = SEM_UNDO;

(void) semop (semid, &sops_ptr, i);

void unlock resource
int table;

(
struct sembuf

(table)

sops,
~sops_ptr = &sops;

sops.sem num= table;
sops.sem_op = 1

Decrement semadj for process exit
sops.sem_flg = SEM_UNDO;

(void) semop (semid, &sops_ptr, I);

Figure 6. Locking Using Semaphores.

The functions in Figure 6 can then be used around the critical sections to ensure the integrity of the
cache. Further, if a process terminates before unlocking the semaphore, the semaphore is automatically
released by the system because the flag SEM_UNDO is set in the call to semop within lock_resource.
For a more detailed description of these functions, see the UNIX System Programmer’s Manual [1983].

The advantage of using these procedures is that the kernel suspends execution of the calling process
if another process is already in its critical region.

6. Conclusions

Although many programs use varying degrees of concurrency, only a few attempt to implement
mutual exclusion. In the past, this was because UNiX did not offer many facilities, however with recent
versions, various methods have become available. With the growing emphasis on interprocess
communication and multiprocessor machines, it is becoming more important for programmers to make
use of these facilities to ensure the integrity of shared resources.

References

Dijkstra, E.W. [1965] - Co-operating Sequential Processes. In Programming Languages, ed. F.Genuys,
Academic Press, London.

Vol 8 No 5 18 A!.VOGN

Tanenbaum, A.S. [1987] - Operating Systems - Design and Implementation, Prentice-Hall, Englewood
Cliffs, New Jersey.

Unix System Programmer’s Manual [1983] - AT&T, Murray Hill, New Jersey.

ALriJGN 19 Vol 8 No 5

Fun with virtual memory

L. Chubb

University of New South Wales, Kensington, NSW 2033

ABSTRACT

A version of the UNIX version 7 kernel ported to an NS32016 based microcomputer
will form the starting point for modifications designed to allow shared memory,
incremental loading, the mapping of files into a process’s address space and changes to
the way shared text is implemented.

The standard version 7 memory management software swapped entire segments
between memory and secondary storage. During the port it was changed to use
demand paging. Paging is done from a process image file, a regular file corresponding
to the process’s address space. This gives a one to one mapping between the pages in
the address space and the contents of the file.

The proposed changes will allow many files to be mapped into a single process’s
address space and will allow different processes to use the same file. Processes
shareing a file use the same in-memory copies of pages belonging to that file,
effectively allowing them to share memory.

Three new system calls have been designed to create, delete and extend
mappings between portions of the address space and files. The fork, exec and exit
system calls will also be modified to use these mappings.

1. Introduction

On finding myself engaged in porting UNIX* as part of a masters degree I decided it would
be a good opportunity to investigate what could be done with virtual memory in UNIX. This paper
reviews briefly some of the more interesting functions provided by two implementations of virtual
memory in UNIX today and present a few of my own ideas on the subject. The use of virtual
memory in UNIX system V with its regions and shared memory and then UNIX Version 8 with the
concept of processes as files will be examined briefly.

My ideas evolved while I was porting the UNIX Version 7 kemel to an NS32016 based
microcomputer and contain elements found in the other versions of UNIX. During the port the use
of swapping in standard Version 7 was replaced by demand paging from a process image file.
Version 7 was ported as it was the only version of the source readily available to me when I started.

By associating each segment of the address space with a file and allowing the user to create
and remove segments the process can be debugged by reading and writing the file representing
stack and data areas, as in Version 8; and shared memory can be provided, which is a feature of
System V. The same mechanism can be used to map any regular file into the process’s address
space allowing dynamic linking and shared text.

* UNIX is a registered trademark of A.T.&T. Bell Laboratories

Vol 8 No 5 20 AULIGN

2. Processes under UNIX Version 8

UNIX Version 8 [Killian 85] provides a new directory called /proc. Each file in this
directory corresponds with the process image of a running process and is used for swapping or
paging. This representation appears to have been motivated by the limitations of previous versions
of UNIX during interactive debugging where the debugger and the object being debugged are
separate processes.

The owner of the process image file is the same as the owner of the process. When the file is
created the permissions allow reading and writing for the owner only. The size of the file is the
size of the virtual space of the process. A feature particularly useful for debugging is the ability to
read and write any part of the process’s virtual space using the read, write and lseek system calls.
When a write is performed on a shared text segment a private copy is made. Using these routines
to access the files allows them to be protected using the normal file protection mechanisms.

3. System V

System V [Bach 86] divides the address space of a process into areas called regions
containing either text or data. There are two data structures involved in mapping regions. One is a
region table containing an entry for each active region in the system giving information about
where its contents are located in physical memory, a pointer to the inode whose contents were
originally read into the region by exec, the size, status, region type and number of processes
referencing the region. The second is a pregion table, or per process region table, containing the
virtual starting address of each region, a pointer to the region table and the permissions associated
with each region.

The text, data and stack regions are created by fork or exec, but system calls are also provided
for the user to manipulate regions. When exec creates the text and data regions the contents of the
executable file are read into these regions.

Shared memory is provided when a region is attached to the address spaces of several
processes at once. Each shared region has an entry in the shared memory table shmid_ds giving
such information as the size of the region, the creator’s identity, the number of times it is currently
attached to an address space, and so on. The shared memory is protected in a manner similar to
that of files having read and write permissions for the owner, the group and others. Shared memory
must not overlap other regions in the address space. If the size of the region is to be increased its
location must be carefully chosen to allow for this expansion.

Before shared memory can be used a new region of shared memory has to be created using a
system call shmget. It retums a shared memory identifier which uniquely identifies the region. A
region specified by the shared memory identifier can be attached to a process’s address space by
using the shmat system call specifying the virtual address where it will reside. If the user does not
specify an address the operating system chooses one.

When a process is finished with the shared memory the region can be removed from its
address space by using the shmdt system call. The region to be detached is identified by the virtual
address in case the same region is attached to the address space more than once.

Another system call, shmctl, is provided to return information about shared memory, change
the user or group id’s or the permissions, and remove the shared memory region.

AUUGN 21 Vol 8 No 5

4. Functions to be provided by my system

What is discussed here are some building blocks which may be placed within utilities or
runtime libraries to provide new functions. The new functions possible are:

1. Shared text.

,
Dynamic linking (or incremental loading) is provided by allowing object files to be mapped
into the address space. This would involve providing some runtime library routines to store
the address of the object code and transfer control. Giving executable objects a one block
header would simplify the matter so that the header need not be mapped into the address
space.

3. Shared memory is obtained by mapping a file with read/write permission into the address
spaces of more than one process at once.

4. The process image can be accessed by using read or write on the process image file which
contains the data and stack segments.

5. A data file can be mapped a data file into a process’s address space allowing the file to be
used as if it were memory.

The benefit of most of these features is well enough known to forgo any discussion of them here
but the ability to map data files into a process’s address space deserves further comment. One of
the big advantages of accessing files in this way is reducing the complexity of any program needing
access to a file, particularly when the access is random. Examples where this type of access may
simplify a program are an editor mapping in its work file or an interpreter mapping in the
interpreted code. As the usual file handling routines are used by the page fault routine it takes no
longer to process a file in this way than using the read or write system calls.

All the functions mentioned above are provided by the same mechanism which is of benefit
in terms of the complexity of the kernel. Overall there may be some price associated with paging
but this has yet to be determined.

4.1 Segments

Users will notice the effects of this implementation of segments only if they choose to use
the new system calls makeseg, rmseg, exseg and segstat to map files into the address space. The
use of process image files by fork, exec, and exit makes little visible difference except for the
existence of the directory/proc containing the process image files. This makes existing programs
compatible with the new system. There is no reason why mapping should be used if not desired as
files can still be accessed in the usual way.

The process image is maintained as a normal UNIX file whose size is exactly 16MByte,
which is the maximum size of an address space on the NS32016. It contains the data and stack
segments. The existing kernel file handling routines are used to access, create and delete the
process image files created during a fork or exec. These files are maintained until the process exits.

Only the data and stack segments created upon execution are kept as part of the process
image file. No actual data blocks are allocated for the gap between the data and stack segments
which lie at opposite ends of the address space. The gap between them in the process image file
allows for the expansion of those segments. When the segments are extended using exseg to cover
non-existent parts of the file missing blocks are read as nulls by the file system software. An
implications of having a gap in the process image file is that the usual file copying procedure
cannot be followed when the process image is duplicated during a fork. It would write blocks for
each block in the gap wasting large amounts disk space. Process image files are copied by a kernel

Vol 8 No 5 22 AUUGN

